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LETI'ER TO THE EDITOR 

Interface widths of a moving front in a model of stochastic 
transport in two dimensions 

R B Pandeyt 
Institute for Theoretical Physics, Cologne University, SO00 Cologne 41, Federal Republic 
of Germany 

Received 10 October 1988, in final form 26 April 1989 

Abstract. A discrete lattice model is introduced to study wetting and interface growth using 
computer simulation. A fraction of the lattice sites are occupied by particles which are in 
constant stochastic motion and carry charges and wetting fluid from one end of the sample, 
connected with a source, to the opposite end, connected with a sink. Initially, all lattice 
sites are dry and all particles are neutral except those in contact with the source, from 
where both charge as well as wetting fluid spread in the bulk. In this model, the width of 
the interface between the dry and wet phases seems to grow with time with a power-law 
exponent which is about f in two dimensions, in agreement with theory of growing interfaces. 
Growth of the charge-density interface width is found to be diffusive. Both the wetting 
front and the charge-density front move with a non-diffusive power-law exponent. 

Because of its diverse applicability, the study of interfaces and wetting has been one 
of the most active areas during the past several years in statistical physics [l-71. In 
most theoretical studies, one usually considers model Hamiltonians such as the discrete 
Ising model and the 44 model among phenomenological models [2,3] to take into 
account pertinent details to analyse the kinetics of wetting and interface in static 
thermodynamic equilibrium. Extensive computer simulations [ 6 ]  have been recently 
used on a ferromagnetic Ising model to understand the dynamics of the wetting front 
and the universality of the interfacial amplitudes. Using the Ising model, one studies 
the formation of an interface between two dissimilar species say, A (described by spin 
up) and B (spin down), in thermal equilibrium with various constraints of specific 
situations. However, the Ising model in thermal equilibrium cannot capture all the 
essential features of non-equilibrium transport. For example, in an immiscible fluid 
mixture, particles of type A and B are in constant stochastic motion and, as a result 
of interaction among the particles and transport mechanism, a variety of interfaces 
may evolve. To illustrate this point let us consider a mixture of particles ( A  and B )  
in a sample which is connected with a source (heat, charge and fluid reservoir, etc) at 
one end and with a sink at the other. The content of the source is transported by only 
one component (A particles). The source can simultaneously supply more than one 
quantity, say colour and charge (or immiscible fluid and charge, heat and charge, etc), 
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which can be transported via A particles. These particles, charged at the source, can 
exchange their charge with their neighbouring particles and at the same time these 
charged particles can colour all the sites along their path, which emerges from the 
source and ends at the sink. Initially, sharp interfaces of colour and charge density 
appear and their corresponding widths begin to grow as a function of time. It would 
be interesting to study the growth of such interfaces as an example of dynamic wetting 
which cannot be described by equilibrium models. To our knowledge, we attempt 
here for the first time to study the growth of the interface in a dynamic system (wetting 
percolation) where we address the evolution of the interface and wetting of two kinds. 
For studying such interfaces we describe, in the following, a model which may further 
illustrate a wide applicability in a variety of non-equilibrium systems including the 
interface [8-121 of various growth models and pattern formation. 

Let us consider a two-dimensional lattice of size L, x L, in which mobile particles 
of type A are randomly distributed [13] with concentration p. Thus, a fraction p of 
the lattice sites is always occupied by these particles while the rest, a fraction (1 - p ) ,  
is always empty; we call these empty sites ‘holes’, referred to as B particles above. 
Now we extend and modify the model introduced by Sapoval ec a1 [ 141 in a percolation 
study, by including interactions beyond the hardcore. Here particles interact with each 
other with a repulsive interaction and with holes with an attractive interaction; both 
particle-particle and particle-hole interactions have the same range (first-neighbour, 
second-neighbour, . . . , nth-neighbour). No two particles can ocupy the same site. 
Particles and holes can exchange their position but with a constraint of change in 
energy (see below). One end of the sample, say the left side, is connected with a 
source (which may be a heat bath, charge reservoir, fluid, etc) while the other end, 
the right side, is connected with a sink. Now, whenever a particle is in contact with 
the source it is charged with unit charge density while it is discharged to zero charge 
density on contact with the sink. These particles also exchange their charge densities 
with certain frequency f (f= 4, which means that the probability of hopping is equal 
to that of the charge exchange and this frequency remains fixed for our study here). 
Thus, charge is transported from source to sink via stochastic motion of the particles. 
This system may be called a special three-state lattice gas model because of three 
charge densities (see below). 

To study wetting, growth and formation of an interface we assume that, in addition 
to charge, the source at the left end is connected with a reservoir of fluid which can 
flow along the path of its carriers, i.e. the charged particles. One may then address 
questions such as how does the charge-density gradient evolve with time and how does 
fluid flow from source to sink? This requires us to define a dry and a wet site. A site 
is dry as long as it is not visited by a particle of unit charge density and it gets 
permanently wet as soon as a particle of unit charge density hops on it. Particles with 
unit charge density have everlasting capacity to wet a dry site permanently until they 
evaporate (are discharged) on contact with the sink, leaving a ‘slug-wet-trail’. This 
may be a very crude idealisation of non-equilibrium wetting in a liquid-vapour mixture 
and may be useful in understanding stochastic growth models [8-121. Initially, the 
whole lattice is dry except the left-most column connected with the source. Although 
all particles are in constant stochastic motion, the only particles which can wet a site 
are those which are or have been in contact with the source. Thus, the fluid percolates 
along the trajectories of the particles of unit charge density and an interface appears 
between the dry and the wet phase. Here we attempt to understand the growth of the 
interface and the motion of the front. 
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Let us now describe the technical details of the hopping mechanism of a particle. 
First, we set the range of interaction, say the nth-neighbour range. A particle at site 
i and one of its neighbouring sites j are then selected randomly. If site j is empty 
then we calculate the following quantities. 

(i)  The interaction energy Eo with particles at site i, 

where index k runs over all the particles and holes from first neighbour to the nth 
neighbour, pk is the charge density of the particle (Pk = 0 or 1) or hole (pk = -1) at 
site k and rik is the distance between sites i and k; holes act as background charges here. 

(ii) The interaction energy E l  for a configuration in which particle and hole 
positions are interchanged. 

(iii) The change in energy P E  = E, - E o .  If and only if A E  G 0 is the new configur- 
ation is accepted and the particle is moved from site i to site j. On the other hand if 
site j is occupied then an attempt to move the particle from site i to site j fails and 
the particle remains at site i. Each attempt (successful or unsuccessful) is counted in 
the Monte Carlo time step, and each attempt to move each particle once is defined as 
one MC step. Although we have considered here charge transport, it can be easily 
applied to various transport processes mentioned in the beginning. 

Since we are looking into non-equilibrium aspects of interface [7, 11,121 and wetting 
[ 6 ] ,  it is important to analyse the growth at the initial stages carefully. Three kinds of 
densities are considered here:( I) the particle density (concentration p), (11) the charge 
density of the particles, the carriers, which is defined as the total charge on all the 
particles divided by total number of lattice sites, and (111) the wetting density which 
is defined as the ratio of the number of wet sites to the total number of sites. Initially, 
both the charge-density profile and the wetting-density profile have the same step 
functional form. In steady-state equilibrium one would expect the charge-density 
profile to acquire a constant density gradient, with the density increasing linearly from 
zero at the sink to one at the source, while the wetting density would assume a constant 
unit value throughout. Our interest here lies in the behaviour for the times between 
these two extreme limits. 

How do charge and wetting densities evolve with time? To address this question, 
let us look into figure 1, a typical evolution of density profiles. As in most of the 
stochastic growth processes, here too an exponential increase of the charge-density 
pc(x, t )  profile seems to emerge. However, the time developments of mean positions 
of the charge-density and wetting-density p,(x,  t )  frontiers are found to be faster than 
diffusion (see below). While there is a remarkable similarity between evolution of 
charge density p,(x, t )  of our model (figure l (a))  and that of the magnetisation m(z ,  t )  
of Mon et al [ 6 ] ,  it is easy note a sharp contrast in evolution of the profiles of two 
densities, namely the charge density (figure l (a))  and the wetting density (figure l(b)).  
The difference in evolution of the wetting density considered here and that of the 
magnetisation [ 6 ]  indicates that our wetting mechanism is quite different from those 
studied in thermodynamic systems. We will discuss here the interface widths of both 
charge-density and wetting-density profiles. A precise evaluation of the interface width 
and an understanding of the dynamics of the frontier are usually hampered by 
fluctuations and by the finite size of the systems. For thermodynamic models, the 
dependence of thermal correlation length on temperature is well understood and 
therefore, it is relatively easy to estimate the finite-size effects [ 6 ] .  In our model there 
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Figure 1. ( a )  Charge density (averaged over column, i.e. ( p , ( x ) )  = T,p,( y ) / L ,  and (b)  wet- 
ting density (averaged) ( p , ( x ) )  as functions of distance x' along the x axis from sink at 
time steps 10, 110, 210,. . . . ,910 with 500 independent samples on a 50x50 lattice at 
p = 0.65. 

are different kinds of fluctuations associated with particle density, particle charge 
density and wetting density and therefore it is rather difficult to separate the effects of 
their influence on the interface width and front propagation. However, from the 
analysis of data for samples of various sizes we get a good estimate for various power 
laws. When we plot the wetting front and charge-density front positions as functions 
of time on a semilog scale the qualitative nature of such a plot resembles a similar 
plot (figure 2) of Mon et a1 [ 6 ] .  However, we observe a good fit for the front position 
with time, i.e. with ( x ) ~ ~ ~ ~ ~  = t k  when we plot these data on a log-log plot. We find the 
exponent k to be about 0.70. We also calculate a similar exponent k', also about 0.70 
for the RMS displacement of the charge-density frontier. On the whole, our estimates 
for the power-law behaviour of the moving fronts are quite different from those of 
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Figure 2. ( a )  (Wetting interface width)' plotted against time on a'log-log scale. We plot 
nearest-neighbour interaction at concentrations p = 0.55 (500) (A), 0.65 (500) (A), 0.75 
(200) (0) on a S O X  50 lattice with runs on additional S O X  100 (100) (0)  and S O X  25 (1OOO) 
(0) lattices at p=O.65; the number of samples is in parentheses. ( 6 )  (Charge-density 
interface width)2 plotted against time on a log-log scale for nearest-neighbour interaction 
at p = O . 5 5  (500) (0), 0.65 (500) (A) on a 50x50 lattice. 
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their thermodynamic analogue [6] which suggests that the dynamical motion of the 
wetting frontier in our model may belong to a different universality class than that of 
the thermodynamic models. 

Next, we evaluate the interface widths. First, we locate the position of the wetting 
frontier, the locus of the last wet site from the source, i.e. for each y direction we find 
the x coordinates x , ( y )  of the last wet site with maximum distance from the source. 
Calculating the first and second moment of positions, i.e. 

we estimate the width W, from 

Plots of such interface widths for both wetting and charge-density interfaces as functions 
of time are shown in figure 2. Figure 2(a) shows the variation of the wetting interfaces 
width with time for several concentrations p of particles with samples of different sizes. 
For the nearest-neighbour interaction, data with samples 50 x 100, 50 x 50 and 50 x 25 
lie very well on the same curve, except for a small deviation in the extreme-time limit 
where size hinders the growth of the interface. This shows that our data for the growth 
of the interface is independent of the sample size in a small time range (of interest) 
after which the front of the interface hits the other end. A log-log fit of the data for 
the wetting interface width W = t ”, gives us an estimate for the exponent v to be about 
f for a wide range of the concentrations p of the carriers ( p  = 0.10-0.75). On the other 
hand, when we increase the range of interaction, we do observe a change in the 
power-law behaviour of the interface growth. At p = 0.65, although there is no sig- 
nificant difference in the power-law behaviour for the interactions ranging from first- 
neighbour to third-neighbour, incorporating the fourth-neighbour interaction ceases 
the growth, as the particles are interlocked due to their interactions. It appears that 
there is an abrupt change in the power-law behaviour of the interface growth as a 
function of the range of interaction (here on increasing the range from third to fourth 
neighbour) and this transition should be carefully studied. We also studied the variation 
of the charge-density interface width with time (figure 2( b ) )  which shows a power-law 
behaviour W,- t ” ’ ,  but the exponent V I  is found to be about f, i.e. the growth of 
charge-density width is diffusive. 

In conclusion, we have introduced a general model to study transport, interface 
and wetting. We have shown that the motions of charge-density and wetting-density 
frontiers are non-diffusive. For the nearest-neighbour interacting system the width of 
the interface formed between dry and wet phases grows with time with an exponent 
v found to be about f, which agrees with the theory [12] of the interface growth 
exponent in growth models. On the other hand, the growth of the charge-density 
interface is found to be diffusive. The range of interaction seems to play an important 
role in governing the motion of the front and growth of the interface width and this 
aspect should be studied in future. 
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